11 <?php>

“Invisible” Code and the Mystique of Web Writing

HeLen J. BurGEss

PHP is a popular scripting language used by hundreds of custom Web applications,
widely used software such as Word Press and MediaWiki, and popular Web sites such
as Facebook and Digg. Though it was originally designed for personal home page
production (hence the acronym), PHP is most often used in server-side scripting A
care part of the LAMP stack (Linux, Apache, MySQL, PHP), it is probably the lan-
guage most often used for database-driven Web applications, thanks to its easy sup-
port for MySQL. PHP code is also popular because it can be mixed freely with HTML,
via simple opening and closing<? php ?> tags. Even novice users can cut and paste
cade info Web pages and perform complex database operations—or create security
and privacy problems: PHP is involved in a huge percentage of the vulnerabilities
tracked Dy the National Institute for Standards and Technology.

IN AN AGE OF WRITING AND CODE, we are all mystics. In my capacity
as a teacher, I am the imparter of mysteries, the encoder of information.
My favorite moments have neatly bookended activity in my Web writing,
design, and development classes. The first is the moment of revelation, the
pulling aside of the curtain: I stand at the podium, enter a URL, and then
choose “View Source” in the browser. Students gasp. It's very satisfying.
My second favorite moment occurs at the other end of the class. A stu-
dent (not a Web designer; perhaps a human development major, or an
English student, or a psychology intern) is working on her tags, trying to
figure out what is happening on the page. We work together, heads not
quite touching, poring over the symbols on the screen, looking for (and
finding) the code that will enable the page to display. She utters a small
sound, makes a change, and previews the page. And the curtain falls, the
page appears—but with a difference. For now, we understand the trick.
In new media studies, we have (or should have) gone beyond simply

167

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

pointing to a Web page and commenting on its structure, development,
and language. But the current trend in focusing on “visual literacy” tends
to emphasize what's on the screen, rather than what lies beneath. Our
understanding of code has gotten lost under the layers of GUI and WYSI-
WYG; graphic design teachers (trained primarily in the visual register) pale
when students click on the <> button in Dreamweaver, and the mysteries
of markup appear. At the same time, though, teaching plain vanilla markup
is somewhat old-fashioned. Sure, there is the magic moment of revelation,
but in an age of database-driven pages and invisible scripting languages
(PHE, Perl, ASPNET, the usual laundry list of server-side applications), it
seems rather quaint to be teaching the <p=> tag (or even worse, the dep-
recated and <table> tags). Server-side scripting languages com-
plicate markup by writing code for us; if we try to view the source, all we
see are the traces left behind in the shape of inert HTML tags. The magic
happens elsewhere. Markup, then, has come full circle: from the mystery
of the Web page, to the revelatory moment of “View Source,” to the invis-
ible scripting we know is there but can’'t quite get to. Unable to scan the
page and take an educated guess at what’s going on under the hood, stu-
dents face a key disadvantage as they try to understand how the Web works.
This is especially true in the world of the social Web, which is dependent
on database calls and the run-time restructuring of pages for its vitality.
“View Source” is no longer sufficient as a mechanistic view of the way
information appears on the screen.

In this essay I want to talk about the history of invisible code and its
relationship to the mystique of writing. N. Katherine Hayles notes that
code has a tendency to operate through “practices of concealing and re-
vealing” (54), in which the programmer chooses which code to leave visible
for the purposes of authoring and debugging. But the process of revela-
tion and concealment in markup goes much further back than electronic
texts—in fact, it is an essential part of the hidden history of print and writ-
ing itself. Long before the magical moment of “View Source,” print and
book producers were already using their own forms of hidden markup:
the symbols written on texts that contained instructions or marked points
for the purposes of textual reproduction. These printers’ marks are the
antecedents of today's markup schema: they are marking up manuscripts
in the same way we mark up electronic texts. Therefore, I want to start out
by looking at the origin of printers’ marks in the era of the manuscript,
with the understanding that these marks represent an ancestry of sorts for
Web writing.

168 - HELEN I. BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

The history of the marks that constitute any text has long been a field
of study. D. E McKenzie, in his study of the history of bibliography, notes
that the body of the text has long held primacy over the other material
that accretes to it. He argues for a "sociology of the text,” suggesting that
bibliography, marginalized (sometimes quite literally) to a supporting role
in the text, actually has its own complex social history (15). Jerome McGann,
similarly, has made arguments for the crucial and constitutive role of “bib-
liographic codes” (57): ways in which the material construction of the book
(using leading, typeface, layout, gutter, and printers marks) fundamen-
tally changes the nature and meaning of any given text. Each text thus
generates its own history as it passes through multiple marked-up print-
ers editions.

Markup works similarly in the formulation of historical (electronic)
texts. It has its own history (the versioning of SGML/HTML/XHTML), its
own grammatical lineage (the development of some tags over others), its
own narrative (the archaeological layers of comments attached to shared
code), and even its own politics (language choices, browser compliance,
and the choice to share code or retain its mystique as the writing of an
invisible professional). Markup thus becomes a kind of ghostly writing
dependent on context and history, rather than merely a means of format-
ting text.

It's my belief that we are going through yet another stage in the history
of markup. The second part of my essay will look at the functioning of
server-side scripting as another invisible hand in the process of electronic
writing. Sometimes practices of hiding and revealing, as Hayles describes,
are necessary for the benefit of the programmer and/or reader—she cites
on the one hand the practice of collapsing/hiding code into object chunks
for ease of use, and on the other hand the revealing of HTML and com-
ments for the explication of the marked-up text (54). The HTML tags we
can see in our browser's “View Source” window are akin to early printers’
marks: they are not readily apparent, but they can be read if we know
where to look, in the process of flipping back and forth between page and
source code. But sometimes, the concealing and revealing is the result of
the operation of the server itself. Because server-side commands execute
before the HTML is written, they are hidden from the browser not by the
programmer but by the server itself. PHP, currently one of the most pop-
ular server-side scripting languages, serves as a useful focal point for my
discussion of hidden code: it is written but never viewed by the end user;
it is in itself a kind of writer of code, passing instructions to server and

<?php= . 169

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

thence to a database; it 1s never seen but only experienced as the end re-
sult on the page. Thus, [believe, we are making another transition in the
history of (electronic) texts: from visible markup to invisible code.

Working in the Copy Shop

The prehistory of electronic markup is intimately tied in with the history
of copying. Texts and markup have been entwined since at least the monas-
tic period of book production through the systematic processes developed
to reliably copy religious (and later secular) texts. Writing, as Walter Ong
notes, 1s a codifying of orality into a text that can be repeated, what Ong
calls an “exactly repeatable visual statement” (124-25). Any such repeti-
tion will necessarily involve a whole invisible apparatus: the infrastructure
necessary to carry out the reproduction of texts, including the hidden
labor of copyists, who communicated to each other during the production
of each text using an abbreviated and highly specialized series of codes.
These codes were the language that ensured a new kind of faith—not in
the mysteries of religious life but in the fidelity of the text.

The history of organized production line copying in the West goes back
to the scriptorium, a kind of workshop for the copying of texts, in which
copyists worked side by side with illustrators and illuminators for several
hours every day, painstakingly reproducing religious texts—the texts of
mysteries. However, the ramping up of the production and copying of
books begins with the growth of medieval universities and the rising
demand for scholarly books (Febvre and Martin 20). The growth of the
secular market for books soon developed into a rationalized system of
production: the pecia system, wherein copy texts, known as exemplars,
were loaned out in parts (piecemeal, or “pecia’) to be copied and then
returned. The pecia system was most important in its capacity as a pre-
server of the fidelity of the text. The loaning of an exemplar meant the

limiting of degrees of freedom from the original—a way of ensuring that
errors did not propagate over multiple copies.

The pecia system was important in the way it rationalized and special-
ized the book production system into a kind of laboring human machine.
Febvre and Martin note that the pecia system encouraged separation of
skills and a division of labor, such that “it became more and more common
for separate workshops to be set up, with copyists in one shop, rubricators
perhaps in another, and illuminators in another” (26). Along with special-
1zation comes the problem of communication: how does one preserve the

170 - HELEN . BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

fidelity of the text when it must pass through multiple hands for copying,
illustrating, and binding? The pecia system achieved this by the use of
pecia marks: marks added by the copyist to communicate where each
pecia was to be placed. These codes, like the XHTML markup we use
today, were specifically meant for the structuring and formatting of text,
marking the beginning and ending of a section, for example. Books were
broken into sections and handed out for copying. Because this piecemeal
approach often resulted in the copied piece starting and/or finishing in
the middle of the sentence, the end of a section was marked by the copy-
ist with a pecia mark. For example, “p4” might mean “end of pecia 4.” This
operated similarly to the “quire signature,” which marked the end of a
quire (that is, a section of a book made from four sheets of parchment or
vellum folded and then stitched, usually resulting in eight or sixteen pages)
and ordered it for binding.

Most importantly, from our perspective, pecia marks were an expres-
sion of a new way of thinking about texts: as information to be structured
and processed. Febvre and Martin note that the medieval copyist often
placed instructions on the manuscript to tell the illuminator what to put
in (a lion, a garden, a snake). As a placeholder, a guide letter was put in
the space where the illuminator (who often did not read the text) was to
illustrate the letter (26). But pecia marks were unique in terms of their func-
tion: they did not mark the insertion of content, but the beginnings of an
understanding of logical structuring—that is, the assembly of the book as
a number of pieces that must be stitched together in physical (not seman-
tic) order. The pecia mark is a coding system for the reassembly of a text:
a communication of repeatable formatting from one writer to another.
This, I would argue, is the beginning of markup: a language specifically
developed for the logical structuring and later formatting of a document.

Going to the Print Shop

The movement from the pecia workshops to the print shop is a compli-
cated tale, even from a mechanical standpoint: the trial-and-failure of
metal castings, poor paper manufacture, and ink viscosity. The history of
the printing press begins with a secret. In a lawsuit in 1434, Johannes
Gutenberg was accused of working with partners on “secret processes”
(Febvre and Martin 51), including the possible manufacture of press pieces
(probably die-cast molds). He was not the only person working in this
area—many metalworkers were attempting to improve the wooden block

<?php> - 171

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

~) |

e e ovlin mepr Qe ﬂz-ﬁrm Fafbtenm 1P PRI ot g8 e

Tlops vl & P g #fvim Bt ala A% o T poina.
m-mm:ﬂnlfﬂffmyﬂw m-ﬁftﬁﬂﬁ}ummmi b g
e - fihon wifFrad ecting Mursrey Abtrudmee n p&'ﬂl‘hﬁ!f Tma
flan g Qe porisr o wamy it S0 Ty Yoo oft-For A fioe
T, e I L B S tirdes- Mol oy coamna gm0 flae
O banrs. ovnier ievemre OF e fe tet ol e i s A1 Tor et Chui
JiD i See ur' Vi egrainiia oim Al e o il AT PR T
are-ficuer i Wie Betansle :“wrnn‘ ot bip e @ e m :m :
' a 1 BT B2 o) e D TNV L ’
H‘nﬁm ﬁ‘mmmm! Fﬁfm . pefimaied mqliﬁm- T wad W y
i e e e Fpanchal ouemtRr T Tes S0 OO FTUr i |
(F gifia fparom Br G pAacer N UL P T fF ociun ofitr el
nuﬁmmprmmﬂm&-ﬂu mnﬁ\nmﬁmmw
Y teolond Prbnan Flmnd besy RS Mt v R Mbanch gpha.
T tntueas: Prrmmer-nefug 1o oo uroiserer g8 in pofiue er Wi

£ fluil ST dectr Deneduen (T asotst fse o erusfigs -drier e dinie - nemo
A o et e e trie Ok o Ther A me Atk snetm b ogos PofitoT
e o perarchin dece ufly i flue miyy T pernsndi A ma) Frroz fmidoe @ b |
L LT T R | T g & ths. it crnner 4 i e s o e
mmﬂqw cnaevmd wbmnt $ie P 6 rlﬂajﬂ_lﬂlﬁﬁ
lend. fr tranctriados amer endia ol Do o Privpnerae o e fitdem i fint
o v masrre Dwmsd 48 cmmzee Tl az me poing W
A 20 preoei fie cnmle Renerne. ST 1o =015 15 biva 1) A e A
Ceufirmusee a i o, g¥ e regen A de pliTiont Crinsronsd fenr o fn
sp-C i e ceptr 1ol publicy P AniRE Mitag nodurieg 100 portr rem

st 0 l

i s s PenRseceel

fiiae -f} ttos i (. 1 3
QLo PO (A it (R tles one: trn pallome Diliamers G5 o defredss
v il vmbe mploim Abottar Vol Wi | de ol prr
e v -mgww‘iﬁm hmmwmm £
: ol 1o g P M2 prineir ervou ks i fram
AD ubossd s o 0D mapd W mmmﬂﬂm E—n

fer Abadern el proneranmial mod: ottty eacfi bes mfne O - ercommmne &
tearm e Q8 o Svost- e i oriia. g tonid ot offerry v erdmd
-t off Suttetime W A wane o pireizeng orifam
ﬂ'm s et fhy 1L CCIRTT !rﬂr_rgﬁmnu rincheny £ adifie
rupdacche puafisipironegn 8- P crrten 881
e o O A ¢ Tibl- vt oerment' <t ur in e b
L P —_— DB cmref g 1 T s At oo

Wﬁrm sfenem n-u: m tudg: e pRenuf o i m

"t?:m B8 i PG e Pl &b piten. erdur mrnrly

Has @ abouon A dfe duns bisrpl- e e fbBr @ J}ﬁpﬁm

filiog- (ko vuur rtlag: - abton . pReasnl A 1 gfen ot ev sVl m

sy wm ep bl TR Tl oo -be onneesde I ST etrrpe. o & pliry

i Dur b POl gl Al fPorifl quo tr Seaenzinem MEVCELIPE Dorein B '
saflp e A ¢TI ROV HHp. . T IES F motm 78 B Rt dmdd gm
IS Pl ok e e oF Aoton. i EVEE R T 0p AT O e tida P

Figure 11.1. Manuscript showing pecia mark in outer margin of verso, “Finis xx pet." From
Guillelmus Durantis, Rationale Divinorum Officiorum. Italy (?), s. XIVin. call no. HM 26298.
Reproduced by permission of The Huntington Library, San Marino, California.

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

printing process by creating a system of interchangeable letters or move-
able type. But Gutenberg is significant as a precursor of a dot-com mil-
lionaire: he was the holder of the technological “secret of the art of print-
ing, . . . the making up of a page of print from separate, moveable types”
(50). Already the value of the secret was evident: Gutenberg’s angel in-
vestor, Fust, found him difficult to work with, so he waited until he had
trained his more pliable assistant, Peter Schoeffer, and then called in the
loan. Gutenberg’s secret was thus revealed, and he died bankrupt (Febvre
and Martin 55).

During this period, another series of codes was developed for marking
up the text. The register—a table recording the first and last word on every
page—was developed so that the printer could ensure pages were in order
without having to read the entire text. Letters and numbers appeared on
the bottom of leaves, not for pagination (as a service to readers) but as a
way of ensuring the pages were folded and bound in the proper order.

If the pecia system enabled the reproduction of the text to a reason-
able standard of fidelity (by using an exemplar), the printing press was able
to capitalize on its mechanical ability to fix the page many times over from
the same tray. Although errors could propagate this way (if the tray was
laid out incorrectly, every single copy would also be incorrect), and in fact
made for a corruption of the text that could be more damaging precisely
because of its consistency (hence the introduction of printers’ editions),
the printing press allowed for a fundamental shift in the culture of writing
through its emphasis on mechanical reproduction. The printers marks
on a printed copy were evidence not of the faith of the copyist in a reli-
gious sense—or even faith in the sense of accurate fidelity to an original
manuscript—but rather faith in the ability of the machine to automate
the material process of reproduction.

The Archaeology of Electronic Markup

The movement from religious to secular to mechanical faith has taken
another turn with the implementation of document processing for online
environments. Although computerized print software is essentially an ana-
log of workshop procedures and relies to a great extent on precisely the
same printers conventions and vocabulary, HTML, descended from the
more general schema of SGML, is designed as a way to facilitate the for-
matting of electronic information in a logical fashion explicitly for display
online, in a browser. Like the regulated procedures of the scriptorium,

<?php> . 173

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

HTML is designed with reproducibility in mind: the faithful rendering (in
this case, electronic display) of the same file over and over. HTML tags are,
in this case, similar to the guide letters and notations written into the man-
uscript: instructions to the browser for formatting the file on the screen.
But at the same time, the file is not expected to be literally copied: no sec-
ond file is produced. This is a move to a kind of virtual faith—a faith in the
consistent display of a document that will nevertheless disappear when
the window is closed.

Electronic markup is a fairly straightforward, mostly human-readable
system in which each piece of content is tagged. For example, [am work-
ing up a simple Web page in HTML to display classroom grades. Here's
what my code looks like:

<table>
<tr> <td>James</td> <td>Jones</td> <td>B</td> </tr>
<tr> <td>Pavithra</td> <td>Jones</td> <td>B</td> </tr>

</table>

Tables such as the one above are an interesting case study in the way HTML
has changed over time. Originally, HTML tags were designed wholly for log-
ical data display: the heading <h1> is larger than <h2> to signify relative
importance and nesting, not to give the letters a nice fat 16-point Times
New Roman look. Tables, in their original formulation, were designed to
be just that: a method of tabulating data accessibly. As higher bandwidth
speeds and more efficient image compression algorithms enabled the rou-
tine use of images, semantic markup started to get tangled up with visual
formatting. The graphic designer's desire for flashy pages and fixed-size
layout complicated the split between content and logical structure by using
structural elements (notably tables) to visually format pages. Ironically,
this visual formatting relied on invisible markup and image elements.
Rather than being used as a logical grid to organize data, HTML tables were
used as a grid for laying out sliced-up images intended to produce pixel-
perfect visual layouts. The one-pixel transparent GIF (an invisible square)
was routinely used to force page layouts.

Groups such as the World Wide Web Consortium (W3C), dedicated
to the formalizing of Web standards, and a few designers (notably Jeftrey
Zeldman and Eric Meyer), who wanted code to be more compliant with
browsers and easier to reformat, were unimpressed by the hybridization of
logical structure and visual design. Their dissatisfaction led to the standard-
1zing of XHTML and CSS, a rigorous approach aimed at again separating

174 - HELEN]. BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

form and content. Such a form/content division is logical and readable:
“View Source” once again becomes a human HTML reader’s best friend.
We can read the markup and style sheet and make a fairly accurate guess
as to what the document would look like on the page. And yet even at this
stage, we already see the beginnings of a deferral of content: the link to an
external style sheet means we must find and read that file to get a sense
of the look and feel of the page. Nevertheless, the style sheet is readable
by the end user; all the information is there. Reading and interpreting
markup is thus relatively simple while we are talking about an electronic
document in terms of one XHTML “text” to which is applied a structural
markup and a presentational markup.

Three or four years ago, I would have been happy with my online grade
listing. But mere display is really not all that useful. I've decided I want to
put all my grades into a database and rerender the page in a scripting lan-
guage, so that I can make changes to grades and add students without
having to rewrite all that code. Virtual fidelity is no longer my goal: [want
to change the document from reload to reload. In this instance, HTML is
inadequate. I need a place I can store my grades, a way to update them,
and a way to display them through my browser (computer scientists call
this CRUD—<create, read, update, delete). In short, I need a scripting lan-
guage that can interact with a database.

PHP 101: What Is It? How Does It Work? And Why Should | Care?

PHP (in a typical piece of GNU-recursive jokery, this stands for “PHP hyper-
text preprocessor”) is a server-side scripting language that, among other
things, can be made to write code. In HTML, we are accustomed to writ-
ing the following:

<p>Pavithra Jones</p>=

The browser reads these instructions, and behaves accordingly, printing
to the browser

Pavithra Jones

In PHP, however, we have another kind of operation going on. Usually,
yvou upload your HTML files to a server. Browsers all over the Web send a
request for the file. The server gives it to them, and they read the HTML
and display it accordingly.

<7?php=> . 175

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

PHP adds in an extra layer:

 The browser asks for the PHP file.

* The server looks for the file, executes the PHP, and gives the result to
the browser as HTML.

» The browser interprets and displays the HTML.

* We see the words "Pavithra Jones.”

Think of a restaurant: When we go to the restaurant and ask the waiter for

an egg sandwich, he doesn't go back to the kitchen and dig up an egg and

some bread. He goes back to the kitchen, asks the chef to cook the egg

and toast, and then brings them back to us prepared. In this case, the Web

server is the chef, cooking up the PHP code and sending it back as HTML.
The PHP code, in fact, looks like this:

<?php echo "Pavithra Jones"; 7>
Again, we will see
Pavithra Jones

But if we look at the HTML source, the PHP will have magically disap-
peared, leaving plain vanilla HTML identical to our first example. The
difference is that the server is reading and executing the PHP portions of
the code, and writing “Pavithra Jones” when it has been told, right into
that dynamically scripted Web page.

This simple echo command might be interesting in that it represents
the movement from simple tagging to server interaction, but thus far it
merely replicates the functionality of the HTML page: to display a hard-
coded message. Why bother, when hard-coded HTML achieves the same
purpose, and without having to compile PHP on vour server? What gets
interesting is the magic that happens when PHP interacts with a database
language such as MySQL to retrieve information and display it on the
page. I've decided I only want to display grades for students with the sur-
name Jones. Let's take a sample snippet:

<?php
$result = mysql_query("SELECT * FROM DTC355 WHERE sur-
name='Jones"");

7>

This is a hybrid piece of code. The SELECT part inside the quotes is a
MySQL query: a piece of code asking the MySQL server to select all the

176 - HELEN . BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

records in the database table named “DTC355” with a “surname” value
equal to the string “Jones.” mysql_query() tells the server to execute the
query inside the quotes. And the record data gets fed into a variable called
$result. From there, it's a simple matter to get it to print on the page:

<?php

// Get records from the "DTC355" table

$result = mysql_query("SELECT * FROM DTC3255 WHERE surname
="Tones'");

// keeps getting the next row from the database until there are
no more to get

while($row = mysql_fetch_array($result)) {

// Print out the contents of each row and concatenate into lines

echo $row['name’'] . $row['surname'] . $row['grade’];

]

>

All the information contained in $result gets fed into an array called
$row. Then $row prints its values over until there are no more records in
the array. This will produce the output:

JamesJonesBPavithraJonesBSammyJonesCChandraJonesA

Clearly we have all the information, but we want it to be marked up use-
fully. This 1s where PHP comes into its own as a metamarkup tool:

<?php

/f Set up some repeating HTML tags to save some space later on

$startrow="<tr> <td=";

S$cell="</td> <td>";

$endrow=</td> </tr>";

// start the table tag in HTML and put in a new line siring feed

echo "<table=" . "\n";

/{ Get records from the "engl499” table

$result = mysql_query("SELECT * FROM engl499 WHERE sur-
name="Jones'");

// keeps getting the next row until there are no more to get

while($row = mysql_fetch_array($result)) {

// Print out the contents of each row and concatenate with HTML
tags

/f use the new line string feed to break up the HTML when viewing

SouIce

<?php= - 177

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

echo $startrow . $row['name'] . $cell . $row['surname’] . $cell .
$row['grade’'] . $endrow . "\n";

1

// close the table HTML tag

echo "</table>";

=

The PHP script has now taken the information from the database, added
in HTML for formatting, and output it. We've added in some invisible new
line characters (\n) so that when we view the HTML, it won't all be in one
long string. When we view the source, we see this:

<table>

<tr> <td>James</td> <td>Jones</td> <td>B</td> </tr>
<tr> <td>=Pavithra</td> <td>Jones</td> <td>=B</td> </tr>
<tr> <td>Chandra</td> <td>Jones</td> <td=A</td> </tr>
</table>

Not pretty, but useful as an example: the PHP scripting has disappeared,
to be replaced with a machine-written, static page.

This kind of query-based scripting, combined with PHP-generated
markup, is interesting on several accounts. The first is that it 1s still dis-
played flat: all we see if we view the source from the browser is the HTML
to display it. The second is that we can make as many calls as we want
into the database: the page is suddenly as malleable as the database itself,
a plastic space that can change with every impatient reload. The third is
that it's writing within writing within writing: HTML holds the PHP, which
holds the MySQL query.

But the problem with PHP is that the end user can't read it. Now we are
talking about a disappearing or invisible tagging system—one in which not
only is the PHP operating invisibly on the page, but also the actual code of
the document can no longer be read in the “View Source” command. Be-
cause PHP is executed on the server, not in the browser, any attempt to
view the source locally reveals only the executed markup, not the PHP com-
mands. We have moved to a tripartite markup system: content included
(via script or database call) by PHP at run time, resulting information
marked up logically in the XHTML, final look-and-feel text/image format-
ting in the CSS. This movement, from presentation to dynamic generation
and retrieval, echoes the medieval transition from religious manuscript
production to secular copy production: from the guidelines and sketches

178 - HELEN]. BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

of the monastic scriptoria to the operational marks of the pecia workshop,
and later the page registers of the print shop. An emphasis on the visual
formatting of an existing long-form document gives way to instructions
for the logical structuring of a document in pieces: the document object
model. The shift from static formatting to run-time assembly also echoes
the pecia and print shop's rationalization of production, in that pieces are
farmed out to different agents—the style sheet, the looping algorithm, the
database—just as pieces of a book were given to typesetter, binder, and
cutter. To the end user, all this labor is invisible.

Ghosts in the Deep Web: The Database

In an electronic file, PHP scripts stand in for the information they will
call; like pecia marks, they pinpoint the beginnings and endings for inclu-
sions of text, whether quire, chapter, or blog entry. Like printer's marks,
PHP snippets elicit an operation or execution: they are symbols requiring
an action be performed. The key difference is that although pecia marks
are meant to ensure repetition, PHP scripts are written to ensure flexibil-
ity; the goal of a dynamic Web site is to produce pages customized to each
query. PHP does not contain the information itself (this is left to the data-
base), but rather contains instructions on what to do with the data, and
where to put it.

Database storage and retrieval (known as the deep Web) 1s obviously
useful for corporate databases, shopping carts, online ordering, online
catalogs, and so on. But it's interesting to us as Web writers because of the
next-generation social Web. PHP scripting allows us to include a chunk of
(often unformatted) content (notably, content presented by a content man-
agement system [CMS], blog entries, menu items) from a database, place
it on the page, and then apply markup and styles. It allows for the switch-
ing of styles and templates according to whim, the easy addition of infor-
mation via a text box and the reshuffling of that information or narrative
at a moment’s notice. A blog or a CMS can be changed with a click from a
chronological sorting of entries, to one by category, to one by author.

The flexible chunking system of the deep Web means several things for
a writer. First, content is broken into discrete sections and stored in a data-
base, which has the effect of breaking the historical tradition of writing as
a kind of complex narrative weaving. Lev Manovich has identified what
he sees as a fundamental antagonism between narrative and database.
Database logic, he argues, stores information in discrete pieces that are

<?php> . 170

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

only connected together at run time: the database “exists materially” (in
the sense that all the available data are stored somewhere ready to be
used) (231), while “the narrative is constructed by linking elements of this
database in a particular order, that is by designing a trajectory leading from
one element to another” and is thus “virtual” (231). Fundamentally, a data-
base is about storage, while narrative is about ordering.

Narrative personal blogs, threaded discussion boards, and news services
rely on just such a logic. On the surface, such sites appear to work chrono-
logically (usually, although not always, backwards, with the newest entry
at the top). [tems might be linked in a kind of mininarrative. For example,
Boingboing.net often posts a minichronology at the bottom of a post,
pointing to recent posts on the same topic, which are also listed chrono-
logically. But in fact, the flexibility of PHP to retrieve multiple records from
a database and display them according to any number of requirements
means that at any particular moment, the content might be reordered on
the page by date, or category, or subject—or, in the case of multiauthored
sites, the author. Under the hood, we don't have to move information from
one category to another. We just change category flags in the database, or
add a new keyword for multiple categories. Information retrieval can now
be keyed to specific tags and sorted according to a different chronology,
author, or numerical pattern. The SQL command “ORDER by [asc,
desc]” renders this operation trivial. The server can take multiple data-
base entries, recombine them into different groupings, and display them
out of sequence, thereby having the effect of changing the fundamental
nature of the page as progressive narrative. Narrative time (in terms of the
chronology of the entry) is overturned in favor of recombinant time.

This reordering property fundamental to database logic is also spatial,
as evidenced visually in the GUI to a MySQL database. One example, the
Web-based phpMyAdmin panel, displays data spatially in text boxes and
tables as a way of echoing its internal structure. This is only a visual rep-
resentation, of course, but it resembles the spaces on an annotated man-
uscript page. The difference is that the spaces of the page can be changed
at run time; clicking on a table heading or running a query will produce a
new screen with a different combination of tables and text boxes. Unlike
the old manuscript pecia marks, executed with repeatability in mind (the
faithful reproduction of a text), PHP queries produce texts that can differ
according to changeable input (and the data itself). Attempts to “browse”
a database at the back end with a GUI such as phpMvAdmin lead to a mis-
recognition. We may think we are looking under the hood at the database,

180 - HELEN J. BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

il edu= 31233 Datnl rimysgl F Table | columns priv

Structure Brorarna Gl Soearch = Irsert | [Expart 42 Oparmiizns I

Field Type Aftributes Hull Detaull Exfra Acton

Fa Bkl) & At Eref ol Tahbl Al Blegrmirg of Tabds et | |
e s 17 S{ace Lusage Row Staliaie:

Keynome Type Cardimality Action Field Type Lisnge Slements Values

Z20 Lhylom I e Examd

Figure 11.2. Tablelike layout of phpMyAdmin MyS5(Q) L administration software.

but at any single moment, we are looking at a visual and tabular represen-
tation of a much more abstract field of data. The design of the interface
itself determines what we see of the data structures and information.

At the same time, the phpMyAdmin interface offers us an interesting
example of the meta-level similarity and difference between pecia mark
and PHP query. Clicking on a link in phpMyvAdmin displays the resulting
data, but also helpfully displays the underlying query (the actual coded
request) that was performed. On a manuscript, the pecia mark is already
there, waiting to be executed. In the phpMyAdmin graphical interface,
time is flipped: the query is performed, and then the code is displayed.
This is because, ironically, the interface is itself scripted in PHP.

A second consequence of the PHP-enabled “chunking” of writing is that
a site with a wide and changing range of dynamic content becomes one
page; the database is the storage area for content. At its simplest, a site
can now consist essentially of one XHTML page containing PHP scripts,
one CSS page, and a database. Even CMSs, which seem hugely compli-
cated in their file structure, adhere to the basic rule: the page you see
is always the same index.php page. It calls various scripts and includes
smaller formatted chunks (for example, a sidebar template or a footer)
from other files, but the database is still responsible for all the content. At
run time, the server executes the scripts in order, gathering first the “in-
clude” templates such as the sidebar, and then slotting in data from the
database.

<?php> . 181

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

Within that simple structure, however, one must make a series of very
careful choices. The retrieval of information is flexible, in the sense that
databases change over time and can be called in multiple ways, yet at the
same time rigid, in that the author has to decide in advance what choices
can be made. This restriction affects both database design and PHP script
design: what is likely to be most useful as a cluster of information? How
should one piece of information be related to another in the database?
My classroom example is simple enough—all I am likely to need to know
is a link between name and grade. But complex databases can end up con-
necting one-to-many or many-to-many pieces of information. For exam-
ple, my students might be in more than one class, or I might want to share
the database with a colleague. I might suddenly discover that [have a stu-
dent with a name that is too long for the field, or [might discover that one
of my students has changed her name to Moon Unit, in which case TI'll
have to create a new record and somehow link it to the old one.

Holding all this structural information in my head long enough to deter-
mine what questions will be asked of it means conceptualizing the whole,
even though I will only ever see it in parts. The database itself becomes, in
some ways, a kind of material ghost that lurks at the back of every blog and
CMS. As Manovich says, all the content (the paradigm) is there, but only a
small amount will be syntagmatically displayed at any given page reload.

Finally, the intervention of PHP in the Web writing process means that
agency is transferred from browser to server. If we think about it at all, it
is the browser that is usually ascribed the agency in a Web session. The
browser is, after all, responsible for sending and receiving coded mes-
sages, for interpreting the pecia marks embedded in the document. The
browser is our faithful copyist, laboring within a series of markup rules to
produce a text that is, depending on the browser type and settings, more
or less the way the author imagined it.

With a PHP/SQL-driven site, however, the agency moves elsewhere. The
secret technology is the server, which has now become more than a server:
it does not just parcel out files, but also parses instructions inside them.
The server is no longer a server but what Bruno Latour would call an act-
ant—a semiautonomous personality or “quasi-object” (51) that is built in
the nexus between different technologies of matter, machine, writing,
and consciousness. Along with the end user author entering data and the
originating author of the code, we have another hidden operator at work:
the server, which faithfully executes the PHP code and writes the results
to browser-readable HTML.

182 . HELENJ. BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

In the age of the social Web—notably the advent of mass user-generated
content sites such as YouTube—dynamic authoring has taken on a newly
decentered role. Indeed, it is no longer clear who—if anyone—can claim
to be the author of a site. Writers and video uploaders interface with data-
bases and scripts in a network of relations, with agency shifting between
writer, server, database, and browser. Manovich notes that the database is
not merely the container upon which the algorithm operates:

It may appear at first sight that data is passive and algorithms active—another
example of the passive-active binary so loved by human cultures. A program
reads in data, executes an algorithm, and writes out new data. . . . However,
the passive/active distinction is not quite accurate because data does not

just exist—it has to be generated. (224)

For the casual user, the emphasis on content often serves to obscure the
huge investment that has gone on behind the scenes to produce the infra-
structure allowing all these mash-ups and content-sharing sites to exist.
Blogging software, wiki packages, and CMSs are painstakingly scripted
and debugged by large communities, the customizable Ajax interfaces
are the product of intensive start-up development. Open source develop-
ment means code 1s more accessible, but much of this code is aimed at
producing seamless front ends for data input. At the click of “Upload” or
“Refresh” or “Save Category,” a kind of discretized and recombinant magic
happens, with the server secretly working behind the scenes to produce
the prestige. This last is the most interesting because it leads us right back
to the beginning of writing: writing as mystique, the domain of the invis-
ible expert who executes the marked-up page.

Conclusion

Server-side scripting of database calls and markup are bringing into obso-
lescence the end-user “View Source” command. To be able to read HTML
is no longer sufficient—one must be able to read the logic of the page and
be able to tell what is going on underneath without being able to read it
directly. Similarly, back-engineering a dynamically driven site is becom-
ing a necessary skill for Web authors as they participate in the community
of Web development. But marking up is not the “translation of the world
into a problem of coding,” as Donna Haraway would say (164). It is the act
of making visible the invisible.

With this injunction, we have two options as readers and reproducers

<?php= . 183

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

of electronic texts. The first, if we are unlucky, is to have to work through
inference and perform the indirect act of reading the screen: looking at
logical divisions of content in the page and working out the probable data-
base calls. This requires a careful training in not merely visual (in the sense
of images) but spatial and quantitative literacy—an understanding of how
databases are organized, how they can be queried, and where and how
the data can be best displayed on the page. In addition to the database
design, the architecture of the site itself can often require a complex act
of inference. Attempting to read a site can result in a series of structural
deferrals as we look for a piece of code. In a CMS such as Joomla, for
example, a desire to change the visible front page index.php will lead us
several levels down the directory structure to another index.php inside
the “Themes” folder, hacks of .htaccess files redirect pages while hiding
the actual directory structure in the URL; server-side includes import of
many snippets of HTML and PHP from other parts of the site. Thus, in
addition to database logic, we must learn to read site design logic.

Our second option, if we are lucky, is to learn to read the code itself. In
this endeavor, we have a notable helper: the comment. Comments are
the pecia marks, registers, and guide letters of our time—in many ways,
the literary exegesis of code. As creators of digital texts, we learn early on
(if we are taught well) that commenting code well is absolutely essential
for the transmission of an electronic text from one person to another,
whether they be a fellow student, a fellow designer, or a client. The com-
ment is in itself a literary form. The pinnacle in the genre of commenting
is, ironically enough, a print text: Lions' Commentary on Unix (often called
the Lions'Book). This book is a listing of the entire source code of the Unix
6 kernel, with an accompanying commentary. It bears a distinct resem-
blance to medieval text commentaries.

The comment is particularly vital today in the modern equivalent of
the scriptoria: the large, virtual workshops of the open source software de-
velopment community. Open source tasks in such communities as Source-
Forge are parceled out in pieces for coding by individuals; small software
tools and plug-ins are developed by multiple authors using carefully
arranged CMSs (such as Subversion and Bazaar) for versioning and com-
munication. Chief among these communication tools are the comments
embedded within the code itself: section markers and small reminders
from one developer to another, explaining what a particular piece of code
does or what interactions it might potentially have with other pieces of
software.

184 - HELENJ. BURGESS

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

Comments are both like and unlike the original pecia marks they resem-
ble. Structurally, they do indeed mark out the beginnings and endings of
sections, and they mark out spaces for the inclusion of data. But just as
PHP has changed the way we view markup—by becoming an active author
in the process of generating a site from a database—so too comments go
beyond the logical markers of the pecia system. Instead, comments seek
to explain what will happen when the code executes; they look into the
future and tell us what the invisible machine will do with all that data. Com-
ments are thus a crucial companion to executable code, just as HTML was
a companion to simple text and pecia marks were to manuscript fragments.

As 1 have shown, the social history of texts—a history of faith, from reli-
gious piety, to secular fidelity, to mechanical reproduction, to electronic
display—that began in the medieval workshop has undergone a clear tran-
sition again in the age of the database and server-side script. But through

all of these transitions, we have seen the consistent use of textual marks:
guideline, pecia, tag, script, comment. In an electronic culture where so
much press is devoted to front-end social tagging, user content develop-
ment, and online jabber, we forget that there is always another kind of
communication going on, an invisible social code: the communication
between one developer and another, one server and another, one data-
base and another. These marks may be hidden, but they are the under-
pinning of electronic writing.

Works Cited

Febvre, Lucien, and Henri-Jean Martin. The Coming of the Book: The Impact of Printing,
1450-1800. Translated by David Gerard. 1976. London: Verso, 1997,

Haraway, Donna. Sinmtians, Cyborgs, and Women: The Reinvention of Nature. New York:
Routledge, 1991.

Hayles, N. Katherine. My Mother Was a Computer: Digital Subjects and Literary Texts.
Chicago: Chicago University Press, 2005.

Latour, Bruno. We Have Never Been Modern. Translated by Catherine Porter. Cambridge,
Mass.: Harvard University Press, 1993.

Lions, John. Lions' Commentary on UNIX 6th Edition with Source Code. 1976. San Jose,
Calif.: Peer-to-Peer Communications, 1996,

Manovich, Lev. The Language of Nelr Media. Cambridge, Mass.: MIT Press, 2001,

McGann, Jerome, The Textual Condition. Princeton, N.J.: Princeton University Press, 1991.

McKenzie, D. E Bibliography and the Sociology of Texts. 1986. Cambridge: Cambridge
University Press, 1999,

Cng, Walter J. Omality and Literacy: The Technologizing of the Word. 1982, London: Rout-
ledge, 2002,

<?php> . 185

From A to : Keywords of Markup. Minneapolis, US: University of Minnesota Press, 2010. ProQuest ebrary. Web. 12 March 2017.
Copyright © 2010. University of Minnesota Press. All rights reserved.

